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SUMMARY

An edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements
was recently proposed to significantly improve the accuracy and convergence rate of the standard finite
element formulation for static, free and forced vibration analyses of solids. In this paper, ES-FEM is
further extended for limit and shakedown analyses of structures. A primal–dual algorithm based upon the
von Mises yield criterion and a non-linear optimization procedure is used to compute both the upper and
lower bounds of the plastic collapse limit and the shakedown limit. In the ES-FEM, compatible strains
are smoothed over the smoothing domains associated with edges of elements. Using constant smoothing
function, only one Gaussian point is required for each smoothing domain ensuring that the total number
of variables in the resulting optimization problem is kept to a minimum compared with standard finite
element formulation. Three benchmark problems are presented to show the stability and accuracy of
solutions obtained by the present method. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Inelastic structures subjected to variable repeated or cyclic loading may work in four different
regimes, which are presented in the Bree-diagram (Figure 1, [1]) together with the evolution of
the structural response: elastic, shakedown (adaptation), inadaptation (non-shakedown) and limit
(ultimate) state. In the elastic regime, there are no plastic effects at all, whereas in the adaptation
regime, the plastic effects are restricted to the initial loading cycles and then they are followed
by asymptotically elastic behaviour. Both regimes are considered as safe working ones and they
constitute a foundation for the structural design. We do not consider elastic failure, such as
buckling or high-cycle fatigue here. The inadaptation phenomena, such as low-cycle fatigue and/or
ratchetting should be avoided since they lead to a rapid structural failure. At the limit load, the
structure looses instantaneously its load bearing capacity. Theoretically, these limits may be found
by a complete elasto-plastic analysis, but in most cases the task is extremely cumbersome. Limit and
shakedown analyses calculate directly the load-carrying capacity or the maximum load intensities
that the structure is able to support. The structural shakedown takes place due to development
of permanent residual stresses which were imposed on the actual stresses to shift them towards
purely elastic behaviour. Residual stresses are a result of kinematically inadmissible plastic strains
introduced to the structure by overloads. They clear out effects of all preceding smaller loads.
They also avoid any plastic effects in the future provided that the loads are smaller than the initial
overload. Therefore, in limit and shakedown analyses the knowledge of the exact load history is

Figure 1. Bree-diagram of a pressurized thin wall tube under thermal and mechanical loads.
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not necessary. Only the maximum loads (limits) count and the envelopes of load domain should
be taken into consideration.

The result of load factors in the structural shakedown analysis can be obtained from upper
bound and lower bound approaches. The upper bound shakedown analysis is based on Koiter’s
kinametic theorem to determine the minimum load factor for non-shakedown, see e.g. [2, 3]. The
strategy of computation is initiated from the unsafe region to calculate the exterior approximation
of the shakedown load domain by supposing a kinematically admissible failure mechanism. On
the contrary, the lower bound shakedown analysis is based on Melan’s static theorem, and the
strategy of computation begins from the safe region by supposing a statically admissible stress
field to determine the maximum load factor for shakedown, see e.g. [4, 5]. Duality between these
two bounds was proved by the flow rule including two main points: (1) the strain rate vector is
proportional to the gradient of the yield function and (2) the plastic multiplier can be non-negative
only at points where the yield function equals to zero. Recently, Andersen et al. [6] developed an
excellent primal–dual interior-point algorithm to minimize a sum of Euclidean norms. They showed
that the application of the duality combining with Newton method may lead to very accurate
results in limit analysis. Vu et al. [7] then presented a primal–dual algorithm for shakedown
analysis with the use of kinematically admissible finite elements. By using Newton-like iteration,
it was found that upper and lower bounds of the load factor converge rapidly to the accurate
solution of shakedown limit. However, it is highly recommended that the primal–dual algorithm
should not be used with linear finite elements [8]. Therefore, the application of standard FEM for
the above algorithm results in a large number of total optimization variables, which needs much
computational effort. Possible alternative is an iterative method proposed by Garcea et al. [9]. In
their paper, the adopted FEM element, which can be regarded as mixed one assuming a constant
stress interpolation in each edge-area partition, can represent an effective compromise between
accuracy and numerical efficiency in plasticity problems.

Recently, some stabilization techniques such as the strain smoothing technique [10], stable
particle technique [11], cracking particle [12], external enrichment [13, 14], etc. have been proposed
to stabilize meshfree methods. Liu et al. has generalized the gradient (strain) smoothing technique
[10] and applied it in the meshfree context to formulate the node-based smoothed point interpolation
method (NS-PIM or LC-PIM) [15, 16] and the node-based smoothed radial point interpolation
method (NS-RPIM or LC-RPIM) [17]. Applying the same idea to the FEM, a cell/element-based
smoothed finite element method (SFEM or CS-FEM) [10, 11, 18, 19] and a node-based smoothed
finite element method (NS-FEM) [20] have also been formulated.

CS-FEM is formulated using smoothing domains located inside the elements and proven effec-
tively in solving 2D solid mechanics problems by using a proper number of smoothing cells in
each element (for example four smoothing cells) [18, 19, 21, 22]. The CS-FEM has also been
extended for general n-sided polygonal elements (nSFEM or nCS-FEM) [23], dynamic analyses
[24], incompressible materials using selective integration [25, 26], plate and shell analyses [27–30],
and further extended for the extended finite element method (XFEM) to solve fracture mechanics
problems in 2D continuum and plates [31].

NS-FEM uses node-based smoothing domains associated from the predefined parts of all adjacent
elements around the node. It can provide upper bound solutions in the strain energy and is also
immune from volumetric locking naturally. However, the NS-FEM was found temporally instable,
and can not be applied directly to dynamic problems. The NS-FEM has been developed for adaptive
analysis [32] and extended to formulate the alpha-FEM [33], which combines both NS-FEM with
FEM.
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To overcome such a temporal instability, Liu et al. [34] have very recently proposed an edge-
based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of
solid 2D mechanics problems. Intensive numerical results demonstrated that ES-FEM possesses
the following excellent properties: (1) ES-FEM are much more accurate than the linear triangular
elements of FEM (FEM-T3) and often found even more accurate than those of the FEM using
quadrilateral elements (FEM-Q4) with the same sets of nodes; (2) there are no spurious non-zeros
energy modes found in free vibration analyses and hence the method is also temporally stable,
which shows that numerical results are stable in the time marching in forced vibration analyses;
and (3) no additional degree of freedom at nodes is used and the computational efficiency is
better than the FEM using the same sets of nodes. The ES-FEM was then developed for static
and eigenvalue analysis of two-dimensional piezoelectric structures [35], and was also extended
to the face-based smoothed finite element method (FS-FEM) [36, 37] for solving 3D linear and
non-linear solid mechanics problems.

Note that the above-mentioned smoothed FEM (S-FEM) models are variationally consistent
based on the modified two-field Hellinger–Reissner principle [22, 34, 36]. However, although the
two-field Hellinger–Reissner principle is used, the S-FEM models have only the displacements
as unknowns. Therefore, it is very much different from the so-called mixed FEM formulation
[38–41], where stresses (or strains) are usually also unknowns.

In this paper, the ES-FEM is further extended for limit and shakedown analyses of structures
made of elastic-perfectly plastic material. A primal–dual algorithm based upon the von Mises
yield criterion and a non-linear optimization procedure is used to compute simultaneously both
the upper and lower bounds of the plastic collapse limit and the shakedown limit. In the ES-FEM,
compatible strains are smoothed over the smoothing domains associated with edges of elements.
Using constant smoothing function, only one Gaussian point is required for each domain ensuring
that the total number of variables in the resulting optimization problem is kept to a minimum
compared with standard finite element formulation. Two benchmark problems are presented to
show the stability and accuracy of solutions obtained by the present method.

2. THE FORMULATION OF THE ES-FEM

Similar to the FEM, the ES-FEM also uses a mesh of elements. When three-node triangular
elements are used, the shape functions used in the ES-FEM are also identical to those in the FEM,
and hence the displacement field in the ES-FEM is also ensured to be continuous on the whole
problem domain. However, the ES-FEM does not use the compatible strain fields e=∇su but
strains ‘smoothed’ over local smoothing domains. These local smoothing domains are constructed
based on edges of the elements such that �=⋃Ne

k=1�(k) and �(i)∩�( j) =∅ for i �= j , in which Ne
is the total number of edges of all elements in the entire problem domain. For triangular elements,
the smoothing domain �(k) associated with the edge k is created by connecting two end-points of
the edge to centroids of adjacent elements as shown in Figure 2. Smoothed strains are now defined
by the following operation

ẽk =
∫

�(k)
e(x)�k(x)d�=

∫
�(k)

∇su(x)�k(x)d� (1)
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Figure 2. Division of domain into triangular element and smoothing cells �(k) connected
to edge k of triangular elements.

where �k(x) is a given smoothing function that satisfies unity property∫
�(k)

�k(x)d�=1 (2)

By using the constant smoothing function

�k(x)=
{
1/A(k), x∈�(k),

0, x /∈�(k),
(3)

where A(k) is the area of the smoothing domain �(k). In term of nodal displacement vectors dI ,
the smoothing strains can be written as

ẽk = ∑
I∈N (k)

n

B̃I (xk)dI , (4)

where N (k)
n is the set of all nodes of the elements that share the common edge k (for example,

N (k)
n ={A, B,C} for boundary edge m and N (k)

n ={D,E,F,G} for inner edge k as shown in
Figure 2, and B̃I (xk) is the smoothed strain–displacement matrix on the domain �(k) which is
calculated numerically by an assembly process similarly as in the standard FEM

B̃I (xk)= 1

A(k)

N (k)
e∑

j=1

1

3
A( j)
e B j , (5)

in which N (k)
e is the total number of elements around the edge k (N (k)

e =1 for the boundary edges
and N (k)

e =2 for the inner edges as shown in Figure 2, and A( j)
e ,B j are the area and the compatible

strain gradient matrix of the j th element around the edge k, respectively. When linear triangular
elements T3 are used, the entries of B j and therefore of B̃I (xk) are also constants.
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The smoothed domain stiffness matrix is then calculated by

K̃(k) =
∫

�(k)
B̃T
I EB̃I d�= A(k)B̃T

I EB̃I (6)

where E is the matrix of material constants. The global stiffness matrix is then assembled from all
domain stiffness matrices K̃(k) by a similar process as in the FEM. Note that due to the smoothed
strains ẽk in (1), the stresses obtained from ẽk are also constant in the smoothing domain.

Note that the FEM model in the standard version is displacement-based and fully compatible.
The FEM model is hence stiffer than the real model, and the numerical results obtained are
under-estimated compared with the exact results. In the ES-FEM, the smoothed strain, instead
the compatible strain, is used on the smoothing domains. The ES-FEM-T3 is hence softer and
more accurate than FEM-T3. The numerical results observed from reference [34] even show that
ES-FEM is often more accurate than FEM-Q4.

Also note that the ES-FEM is both spatially and temporally stable, and should have no spurious
non-zero energy modes, and hence is well suited for the dynamic analyses. These were shown
clearly by theoretical analysis and numerical results of both static and dynamics problems in
Reference [34].

3. LIMIT AND SHAKEDOWN ANALYSIS BASED ON ES-FEM

Consider a convex polyhedral load domain L and a special loading path consisting of all load
vertices P̂i (i=1, . . . ,m) ofL. At each load vertex, the kinematical condition may not be satisfied,
however the accumulated strains over a load cycle �ẽ must be kinematically compatible. Let the
fictitious elastic stress vector be rE . According to Koiter’s theorem, the upper bound shakedown
limit, which is the smaller one of the low cycle fatigue limit and the ratcheting limit, may be found
by the following minimization

�+ =min
m∑
i=1

∫
�
Dp(˙̃eik)d� (7a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ẽk =
m∑
i=1

˙̃eik=∇s(�uk) in � (7b)

�uk =0 on ��u (7c)

Dv
˙̃eik=0, (7d)

m∑
i=1

∫
�

˙̃eTikrEk (x, P̂i )d�=1, (7e)

in which Dp(˙̃eik) is the plastic dissipation power per unit domain. The third constraint (Equation
(7d)) ensures that the incompressibility condition must be satisfied on all smoothing domains �(k)
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and at all load vertices i . For plane strain problems, Dv has the form:

Dv =
⎡
⎢⎣
1 1 0

1 1 0

0 0 0

⎤
⎥⎦ . (8)

Equation (7e) implies the normalized condition, i.e. the external load power is equal to one.
By discretizing the entire problem domain into smoothing domains, applying the strain smoothing
technique described in Section 2 and using von Mises yield criterion, Equation (7) can be rewritten
in the following form:

�+ =min
m∑
i=1

Ne∑
k=1

A(k)

√
2

3
�y

√
˙̃eTikD˙̃eik+ε20 (9a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

˙̃eik= B̃k u̇ ∀k=1,Ne (9b)

Dv
˙̃eik=0 ∀k=1,Ne, ∀i=1,m (9c)

m∑
i=1

Ne∑
k=1

A(k) ˙̃eTikrEik =1, (9d)

where �y is yield stress and ε20 is a small positive number to ensure the objective function to
be differentiable everywhere. D is diagonal square matrix and has the following form for two-
dimensional problems:

D=diag[1 1 1
2 ]. (10)

Note that the second constraint in (7) is omitted here since it will be automatically fulfilled by
the algorithm. For the sake of simplicity, some new notations are introduced

ėik= A(k)D1/2 ˙̃eik, tik=D−1/2rEik, B̂k = A(k)D1/2B̃k, (11)

where ėik, tik, B̂i are the new strain rate vector, new fictitious elastic stress vector and new strain
matrix, respectively. By substituting (11) into (9), we obtain a simplified version for the upper
bound shakedown analysis (primal problem)

�+ =min
m∑
i=1

Ne∑
k=1

√
2

3
�y

√
ėTikėik+ε20 (12a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

ėik−B̂k u̇=0 ∀k=1,Ne (12b)

Dv ėik=0 ∀k=1,Ne, ∀i=1,m (12c)

m∑
i=1

Ne∑
k=1

ėTiktik−1=0. (12d)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:917–938
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The Lagrangian associated with the primal problem (12) can be written as

L=
Ne∑
k=1

{
m∑
i=1

√
2

3
�y

√
ėTikėik+ε20−

m∑
i=1
cTikDv ėik−bTk

(
m∑
i=1

ėik−B̂k u̇
)}

−�

(
Ne∑
k=1

m∑
i=1

ėTiktik−1

)
, (13)

where cik, bk , � are Lagrange multipliers. The dual problem of (12) has the form

max
cik,bk ,�

(min
ėik,u̇

L). (14)

Since a finite solution for (12) exists, the constraints (12b)–(12d) are affine, the objective function
in (12a) is convex, thus according to the strong duality theorem, there exists no gap between primal
problem (12) and its dual problem (14), i.e.

min
h(ėik,u̇)

=0
m∑
i=1

Ne∑
k=1

√
2

3
�y

√
ėTikėik+ε20 = max

cik,bk ,�

(
min
ėik,u̇

L

)
, (15)

where h(ėik, u̇)=0 stands for three linear constraints (12b)–(12d). It was proved in [42] that

Equation (15) satisfies if and only if minėik,u̇ L=�, ‖cik+bk+�tik‖�
√

2
3�y and

∑Ne
k=1 B̂

T
k bk =0

hold. Thus, the dual problem of (12) takes the form

�− =max� (16a)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖cik+bk+�tik‖�
√
2

3
�y, (16b)

Ne∑
k=1

B̂T
k bk =0. (16c)

The form (16) is also exactly the discretized form of the lower bound shakedown limit which
is formulated by Melan’s static theorem. It is noted that when m=1, the formulations (12) and
(16) reduce to those of limit analysis.

4. A PRIMAL–DUAL ALGORITHM FOR LIMIT AND SHAKEDOWN ANALYSIS

Dealing with the non-linear constrained optimization problem (12), an efficient technique for large-
scale optimization problems that are successfully applied in [6, 8] is employed. First, a penalty
method is used to eliminate two first constraints in (12) leading to a penalty function

P=
Ne∑
k=1

{
m∑
i=1

√
ėTikėik+ε20+ c

2

m∑
i=1

ėTikDv ėik+ c

2

(
m∑
i=1

ėik−B̂k u̇
)T( m∑

i=1
ėik−B̂k u̇

)}
, (17)

where c is a penalty parameter such that c
1. The corresponding Lagrangian of (12) is

L= P−�

(
Ne∑
k=1

m∑
i=1

ėTiktik−1

)
. (18)
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We denote

cik = −cDv ėik,

bk = −c

(
m∑
i=1

ėik−B̂k u̇
)

.
(19)

Employing Newton method to solve the KKT optimality conditions of the Lagrangian in (18)
and after some manipulations, one gets the following system:

Kdu̇=−Ku̇+f1+f2(�+d�), (20)

where

K̃=
Ne∑
k=1

B̂T
k S

−1
k B̂k, (21a)

f1 = −
Ne∑
k=1

B̂T
k S

−1
k

m∑
i=1

M−1
ik (cik+bk+�tik)

ėTikėik√
ėTikėik+ε20

, (21b)

f2 =
Ne∑
k=1

B̂T
k S

−1
k

m∑
i=1

M−1
ik

√
ėTikėik+ε20tik, (21c)

and

Sk = I
c
+

m∑
i=1

M−1
ik

√
ėTikėik+ε20,

Mik =
√
2

3
�yI+(cik+bk+�tik)

ėTik√
ėTikėik+ε20

+c
√
ėTikėik+ε20Dv.

(22)

The system (20) with the two last terms on the right-hand side may be interpreted as the linear
system arising in purely elastic computations with the global stiffness matrix K. The matrix S−1

k
plays the role of the elastic matrix in the smoothing domains �(k) while the vector

f= f1+f2(�+d�), (23)

is considered as the vector of nodal forces applied on the structure. In order to reduce the compu-
tational costs, one can make the matrix S−1

k symmetric by

S−1
k = 1

2 {S−1
k +(S−1

k )T} (24)

Solving system (20) by the same procedure as for the purely elastic calculation will ensure
the constraint (7c) to be satisfied automatically. We have the incremental vectors of displacement,
strain rate, cik and bk as

du̇= du̇1+du̇2(�+d�), (25a)

dėik = (dėik)1+(dėik)2(�+d�), (25b)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:917–938
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dbk = (dbk)1+(dbk)2(�+d�), (25c)

dcik = cDv dėik, (25d)

where

du̇1 = −u̇+K̃−1f1,

du̇2 = K̃−1f2,

(dėik)1 = M−1
ik

√
ėTikėik+ε20(cik+bk+(dbk)1)−

√
2

3
�yM

−1
ik ėik,

(dėik)2 = M−1
ik

√
ėTikėik+ε20((dbk)2−tik),

(dbk)1 = S−1
k

{
m∑
i=1

M−1
ik

(√
2

3
�yI+c

√
ėTikėik+ε20Dv

)
ėik+

[
B̂kdu̇1−

(
m∑
i=1

ėik−B̂k u̇
)]}

+bk,

(dbk)2 = S−1
k

(
B̂k du̇2+

m∑
i=1

M−1
ik

√
ėTikėik+ε20tik

)
,

(26)

and

(�+d�)=
[
1−∑Ne

k=1

∑m
i=1 t

T
ik(ėik+(dėik)1)∑Ne

k=1

∑m
i=1 t

T
ik(dėik)2

]
. (27)

The vectors du̇, dėik, dcik, dbk and d� are actually Newton directions which assure that a suitable
step along them will lead to a decrease of the objective function of the primal problem (12) and
to an increase of the objective function of the dual problem (6). Based on (25) we can update the
vectors of displacement, strain rate, cik, bk and �. Iterating these steps may drive us to a stable
set of u̇, ėik, cik, bk and � satisfying all conditions in (12) and (6). More details of the iterative
algorithm can be found in [7].

5. NUMERICAL EXAMPLES

In this section, some numerical examples are presented to test the performance of the present
primal–dual shakedown algorithm using the ES-FEM. A number of two-dimensional problems in
engineering practice are considered. The three-node triangular elements (FEM-T3) were applied
for structural discretization. In all numerical examples, the structures are made of elastic-perfectly
plastic material. For each test case, some existing analytical and numerical solutions found in
literature are briefly represented and compared.

5.1. Grooved rectangular plate subjected to varying tension and bending

We first consider a grooved rectangular plate subjected to in-plane tension pN and bending pM
(Figure 3(a)). The load domain is defined by

pM ∈ [0,�y],
pN ∈ [0,�y].

(28)
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Figure 3. FE-mesh and geometrical dimensions of grooved rectangular plate.
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Table I. Limit analysis (pN =�y, pM =0).

Plane stress Plane strain Nature of solution Yield criterion

Prager [43] 0.500 0.630–0.695 Analytical Tresca
Casciaro [44] 0.568 0.699 Numerical von Mises
Yan [45] 0.500–0.577 0.727–0.800 Analytical von Mises
Yan [45] 0.558 0.769 Numerical von Mises
Vu [47] 0.557 0.799–0.802 Numerical von Mises
Tran [48] 0.572 — Numerical von Mises
Present 0.556 0.768 Numerical von Mises
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Figure 4. Grooved rectangular plate: convergence of limit and shakedown load factors.

Limit analysis of the structure was studied by Prager and Hodge [43], Casciaro and Cascini [44],
Yan [45] for pure tension load pN �=0, pM =0. Heitzer [46], Vu [47] and Tran [48] investigated the
problem for the more complicated case with pN �=0, pM �=0. In the present analysis, the structure
is modelled by 720 three-node triangular elements (T3) as shown in Figure 3(b). The following
geometrical data are used: R=250mm, L=4R.

Consider the case of constant pure tension pN =�y ,pM =0. The results of the plastic collapse
load factor are presented in Table I together with known solutions for comparison. It is seen that
our ES-FEM-T3 solutions are well accordant with other existing solutions for both plane stress
and plane strain assumptions.

Limit and shakedown analysis are also implemented for the case of having both in-plane tension
and bending, Figure 4 shows the evolutions of limit and shakedown load factors. In the case of
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Figure 5. Interaction diagram of the grooved rectangular plate.

limit analysis, all the two bounds converge rapidly to the solution �l =0.27811. Numerical result
gives the shakedown load factor �sd =0.23603 compared with 0.23494 obtained by Vu [47].

The interaction diagram of the plate in Figure 5 shows three limit lines: the plastic collapse limit,
shakedown limit and elastic limit. It is observed that if bending is rather small, inadaptation will
occur due to incremental plasticity. In other cases, the plastic fatigue dominates the inadaptation
process. These results agree well with the solutions obtained by Vu [47] and Heitzer [46].

5.2. Square plate with a central circular hole

In this continuous well-known example, a square plate with central circular hole (Figure 6(a))
subjected to two loads p1 and p2 which can vary independently is considered. The limit load of the
problem was obtained analytically by Gaydon and McCrum [49] by using plane stress hypothesis
and von Mises yield criterion. Numerical limit and shakedown analyses were also investigated by
some authors, e.g. Garcea et al. [9] for the case of R/L=0.2 and Heitzer [46], Vu [47], Tran [48]
for different ratios of R/L to evaluate the elastic–plastic behaviour of the structure.

In our analysis, due to the symmetry, one fourth of the plate is modelled and discretized by 288
T3 elements as shown in Figure 6(b). The two following cases are examined

One applied load. In this case one load is set to zero and the other one can vary within a range of
p2=0, p1∈[0,�y]. With 0<R/L�0.204, the exact plastic collapse limit is found since the lower
and the upper bounds are coincident in this range

plim=(1−R/L)�y . (29)

As an example, the exact collapse limit load in the case of R/L=0.2 is plim=0.8�y . Our
numerical solutions obtained in this case are 0.79536�y as lower bound and 0.79801�y as upper
bound. Based on an elastic analysis, the alternating (plastic fatigue) limit can be estimated. The
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Figure 6. FE-mesh and geometrical dimensions of square plate.
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Figure 7. Square plate: convergence of limit and shakedown load factors.

Table II. Limit and shakedown load factors: p1∈[0,�y], p2=0.

Limit analysis Shakedown analysis

R/L [46] [48] Present [46] [48] Present

0.1 0.8951 0.90172 0.89317 0.671 0.6546 0.65992
0.2 0.7879 0.80149 0.79669 0.6157 0.60332 0.60074
0.3 0.691 0.70221 0.69301 0.5212 0.52012 0.52525
0.4 0.572 0.59139 0.57598 0.4361 0.43367 0.43124
0.5 0.4409 0.40117 0.40112 0.3302 0.31600 0.32111
0.6 0.2556 0.24249 0.24286 0.2104 0.21323 0.21191
0.7 0.1378 0.12541 0.12774 0.1327 0.12378 0.12678
0.8 0.0565 0.05227 0.05212 0.0557 0.05225 0.05206
0.9 0.0193 0.01226 0.01326 0.0191 0.01226 0.01325

numerical results obtained by our shakedown algorithm represent the minimum between the alter-
nating limit and the incremental limit. For R/L=0.2, the collapse mode is alternating plasticity.
Our obtained alternating limit is 0.59776�y . The shakedown algorithm gives 0.59735�y as lower
bound and 0.60423�y as upper bound. The convergence property of these solutions presented in
Figure 7 shows that the limit and shakedown load factors become stationary after only five or six
iteration steps.

In order to examine the geometric effect of the circular hole, various values of ratio R/L are
also considered. The obtained numerical results are introduced in Table II, compared with the
solutions of Heitzer [46], which were obtained by using lower bound method and eight-node
elements (FEM-Q8) and with the solutions of Tran [48], which were obtained by using upper
bound method and four-node plate elements. It can be observed that the present solutions agree
well with those in [46, 48].
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Table III. Limit analysis: p1= p2=�y .

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
R/L (analytical) (analytical) [47] [47] (present) (present)

0.1 0.97063 0.99215 0.97082 0.97104 0.97074 0.97102
0.2 0.89425 0.92376 0.89374 0.89472 0.89401 0.89765
0.3 0.79122 0.80829 0.79075 0.79125 0.79069 0.79102
0.4 0.67602 0.69048 0.67585 0.67592 0.67530 0.67654
0.5 0.55682 0.55682 0.55666 0.55679 0.55680 0.55690
0.6 0.43801 0.43801 0.43791 0.43819 0.43790 0.43828
0.7 0.32195 0.32195 0.32196 0.32221 0.32189 0.32207
0.8 0.20991 0.20991 0.21010 0.21016 0.21001 0.21008
0.9 0.10249 0.10249 0.10264 0.10267 0.10255 0.10254

Table IV. Shakedown analysis: p1∈[0,�y], p2∈[0,�y], two-parameter loads.

Alternating limit Lower bound Upper bound Alternating limit Lower bound Upper bound
R/L [47] [47] [47] (present) (present) (present)

0.1 0.49082 0.49082 0.49086 0.48805 0.48800 0.48919
0.2 0.43384 0.43384 0.43390 0.43402 0.43399 0.43409
0.3 0.36128 0.36128 0.36131 0.36246 0.36244 0.36250
0.4 0.27635 0.27635 0.27638 0.27672 0.27672 0.27683
0.5 0.19442 0.19442 0.19445 0.19466 0.19466 0.19472
0.6 0.12360 0.12360 0.12364 0.12364 0.12364 0.12385
0.7 0.06763 0.06763 0.06765 0.06754 0.06754 0.06783
0.8 0.02903 0.02903 0.02905 0.02953 0.02953 0.02984
0.9 0.00709 0.00709 0.00710 0.00721 0.00721 0.00753

Two applied loads. For this case, exact value of the plastic collapse limit load are known in the
range 0.483<R/L�1 where analytical lower bound coincides with upper one

plim= 2√
3
sin
(
�− �

6

)
�y,

1

(R/L)2
=

√
3

2cos(�)
e
√
3(�−�/6). (30)

Details about the upper and lower bounds within the range 0�R/L<0.483 can be found in
the work of Gaydon and McCrum [49]. Numerical limit and shakedown load factors for different
values of R/L are introduced in Tables III and IV, compared with analytical results in [49] and
numerical results in [47]. It can be seen that present results match well with the analytical solutions
for limit analysis. The maximum error is less than 1%.

Table V shows a comparison between our numerical solutions with others obtained by different
FEM discretization and solution strategies for R/L=0.2. Figure 8 presents the interaction diagram
of limit and shakedown analyses for the case of R/L=0.2. It is observed that the shakedown
loads are symmetric via p1/�y- axis, i.e. they are the same for both positive and negative ranges
of p2, while the plastic collapse limits are not. It is also noted that when one load varies within
the negative range, the collapse mode is purely alternating plasticity as shown in Tran [48].
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Table V. Limit and shakedown analysis: comparison.

Limit analysis Shakedown analysis

(p1, p2) (1, 1) (1, 0.5) (1, 0) (1, 1) (1, 0.5) (1, 0)

Belytschko [50] — — 0.780 0.431 0.501 0.571
Corradi et al. [51] 0.767 — 0.691 0.504 0.579 0.654
Genna [52] — — 0.793 0.478 0.566 0.653
Stein and Zhang [53] — — 0.802 0.453 0.539 0.624
Zhang et al. [54] 0.893 0.907 0.789 0.477 0.549 0.647
Gross-Wedge [55] 0.882 0.891 0.782 0.446 0.524 0.614
Zouanin [56] 0.894 0.911 0.803 0.429 0.500 0.594
Garcea et al. [9] 0.902 0.912 0.806 0.438 0.508 0.604
Present 0.896 0.905 0.797 0.434 0.505 0.601
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Figure 8. Square plate: interaction diagram of a square plate with a central hole, R/L=0.2.

5.3. Simple frame

In this example, we investigate a simple frame depicted in Figure 9(a) subjected to two loads
p1 and p2 which can vary independently. Two different boundary conditions are considered: (a)
only the horizontal displacement on the left boundary is free and (b) both vertical and horizontal
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Figure 9. FE-mesh and geometrical dimensions of simple frame.

displacements on both boundaries are fixed. This example was studied in [9] by using an iterative
method, which is based on a mixed triangular finite element and a piecewise linearization of the
elastic domain. For the purpose of comparison, the load domain, geometrical data and material
properties are chosen analogously as in [9], i.e. p1∈[1.2,3.0], p2∈[0.4,1.0], E=2.105, �=0.3,
�y =10. The frame is discretized by 1600 T3 elements as shown in 9(b).
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Figure 10. Simple frame: convergence of limit and shakedown load factors.

Table VI. Limit analysis: comparison.

Garcea et al. [9] Present

(p1, p2) (a) (b) (a) (b)

(1.2, 1.0) 2.975 7.804 2.970 7.901
(3.0, 0.4) 2.831 4.207 2.792 4.241
(3.0, 1.0) 2.645 3.949 2.659 4.008

Table VII. Shakedown analysis: comparison.

Garcea et al. [9] Present

Limits (a) (b) (a) (b)

Elastic 1.203 1.355 1.192 1.427
Alternating 2.940 4.518 2.922 4.657
Ratcheting 2.473 3.925 2.487 4.006

Figure 10 shows the evolutions of limit and shakedown load factors for case (a). In the case of
limit analysis with p1=3.0, p2=1.0, all the two bounds converge rapidly to the solution �l =2.659.
Numerical result gives the shakedown load factor �sd=2.487 compared with 2.473 obtained by
Garcea et al. [9]. Tables VI and VII show a comparison between our numerical results for limit
and shakedown analysis with those obtained in [9]. It is observed that for both cases (a) and (b),
inadaptation will occur due to incremental plasticity (ratcheting) as already pointed out in [9].
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6. CONCLUSIONS

A numerical procedure for limit and shakedown analyses of structures using a novel ES-FEM
has been first presented in this study. The procedure involves a primal–dual algorithm based
upon the von Mises yield criterion and a Newton method to determine simultaneously both the
upper and lower bounds of the plastic collapse limit and the shakedown limit. Using constant
smoothing function, only one Gaussian point is required for each domain ensuring that the total
number of variables in the resulting optimization problem is kept to a minimum compared with
standard finite element formulation. The actual Newton directions are updated at each iteration by
solving a purely-elastic-like system of linear equations to ensure the kinematical condition of the
displacements to be satisfied automatically.

The obtained solutions match well with analytical values and show remarkably good performance
compared with the results of several other numerical methods in the literature. At each iteration,
the lower bound is calculated coupling with the upper bound with no extra computational cost.
This calculation will provide a useful tool to estimate the accuracy of the solution and to ensure the
convergence of the proposed algorithm. A very effective numerical method is achieved due to the
lesser computational cost by using constant smoothing domains constructed on edges of elements
and by direct plasticity methods that achieve plastic solutions in the computing time of only 4–5
linear elastic steps. On the other hand, by using the Newton iterative method, the problem size is
reduced to the size of linear elastic analysis, and hence there is no limit in practical applications.
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Forschungszentrums Jülich, Jül-3704, Dissertation, RWTH Aachen, Germany, 1999.
47. Vu DK. Dual limit and shakedown analysis of structures. Dissertation, Université de Liège, Belgium, 2001.
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